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We present the first study of the distribution, genesis and paleoenvironmental significance of late Pleistocene
loess in northeastern Wisconsin and adjacent parts of Michigan's Upper Peninsula. Loess here is commonly
25–70 cm thick. Upland areas that were deglaciated early and remained geomorphically stable preferentially
accumulated loess by providing sites that were efficient at trapping and retaining eolian sediment. Data from
419 such sites indicate that the loess was mainly derived from proglacial outwash plains and, to a lesser
extent, hummocky end moraines within and near the region, particularly those toward the east of the
loess deposits. Most of the loess was transported on katabatic winds coming off the ice sheet, which
entrained and transported both silt and fine sands. The loess fines markedly, and is better sorted, distal to
these source regions. Only minimal amounts of loess were deposited in this area via westerly winds. This
research (1) reinforces the observation that outwash plains and end moraines can be significant loess sources,
(2) provides evidence for katabatic winds as significant eolian transport vectors, and (3) demonstrates that
the loess record may be variously preserved across landscapes, depending on where and when geomorphically
stable sites became available for loess accumulation.

© 2012 University of Washington. Published by Elsevier Inc. All rights reserved.
Introduction

Loess is widespread across much of the central United States,
especially in the Midwest, on the Great Plains, and near major river
valleys that carried outwash (Fehrenbacher et al., 1965; Flint, 1971;
Ruhe, 1984; Fehrenbacher et al., 1986; Mason et al., 1994; Pye,
1995; Bettis et al., 2003; Roberts et al., 2003; Fig. 1). Many of these
valley trains generated tremendous amounts of eolian sediment, with
thick sequences of relatively pure, silty loess on nearby uplands (Hole,
1950 (reprinted, 1968); Flint, 1971; Hole, 1976; Ruhe, 1984; Leigh
and Knox, 1994). Justifiably, most early research on loess in the
midcontinent area was focused on loess from these main sources
(Chamberlin, 1897; Smith, 1942; Leighton and Willman, 1950; Caldwell
and White, 1956; Fehrenbacher et al., 1965; Barnhisel et al., 1971; Ruhe
et al., 1971), as this loess is thick and dominates the landscape.

However, recent work has documented new, often localized, loess
sources, on other deglaciated landscapes, or those nearby (Aleinikoff
et al., 2008; Grimley, 2000; Muhs et al., 2008). Studies of these more
localized and often thinner loess deposits have expanded the range
of options for loess sources, caused many researchers to rethink for-
mer ideas about eolian processes, and added to the understanding of
the environments and geomorphology of recently deglaciated land-
scapes. For example, Schaetzl and Loope (2008) documented that
loess on uplands in Michigan's eastern Upper Peninsula was sourced
ashington. Published by Elsevier In
from the plain of Glacial Lake Algonquin. They used geochemistry to
link upland loess to dune systems on the nearby lake plain that helped
mobilize and deflate silt from silty–sandy glaciolacustrine sediments.
Stanley and Schaetzl (2011) used textural and thickness data from
loess in central Wisconsin to suggest that it had not one, but two,
unique sources: (1) the late Wisconsin terminal moraine, a landform
rich in silty tills and with numerous ice-walled lake plains (Attig,
1994; Clayton et al., 2008); and (2) unglaciated, sandy, bedrock-
controlled terrain, rendered unstable by thawing permafrost and soli-
fluction (Clayton et al., 2001). In northern Lower Michigan, Schaetzl
(2008) hypothesized that the Port Huron outwash plain was the
source of a thin silty mantle on nearby uplands. Here, permafrost so
controlled the depositional setting that only the flattest sites retained
eolian silt; on most other sites the loess was eroded off. Schaetzl and
Hook (2008) demonstrated that the comparatively small outwash val-
ley of the Manistee River was a source for the thin loess on nearby up-
lands, perched far above the valley. Loess was neither continuous nor
detected on other, less geomorphically stable areas nearby. Finally, ac-
tively eroding surfacesmay also have been loess sources during glacial
episodes, such as the Iowan Erosion Surface (IES) in southeasternMin-
nesota and northeastern Iowa (Ruhe, 1969; Hallberg et al., 1978;
Mason et al., 1994, 1999). During the last glacial maximum, the IES
was ice-free and subject to eolian and fluvial erosion,making it a likely
loess source. Thick loess is present here mainly on stable uplands
known as paha (Mason et al., 1999) and on downwind areas.

Unlike upland areas near small meltwater rivers such as the
Manistee in Michigan, upland surfaces near major outwash valleys
c. All rights reserved.
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Figure 1. Distribution of loess in the Midwest and in Wisconsin. A. After Flint (1971), which is a generalized version of a map by Thorp and Smith (1952). The original extent of this
map extended far beyond the limits shown here. Original scale in Flint: ≈1:154,000,000. B. After Hole (1950, reprinted 1968) and Thorp and Smith (1952). The hatched area in
Michigan represents the extent of loess as mapped by Thorp and Smith. The extent of the study area is also shown.
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tend to be covered with thick loess deposits, because these rivers were
often prodigious and recurrent loess sources (Smith, 1942; Smalley,
1972; West et al., 1980). Loess deposits tend to be concentrated in
50–200 km wide belts alongside these rivers (Smith, 1942; Leighton
and Willman, 1950; Thorp and Smith, 1952; Ruhe, 1969; Smalley,
1972), and they tend to be thicker, more continuous and more
extensive to the east of these rivers. These patterns clearly suggest
that loess transport from them was driven dominantly (but certainly
not exclusively) by westerly winds (Fehrenbacher et al., 1986; Mason
et al., 1994; Muhs and Bettis, 2000; Bettis et al., 2003). Farther from
the rivers, loess deposits are often discontinuous, and in places
the loess is so thin as to have been completely incorporated into the
underlying soil materials (Schaetzl and Luehmann, 2013). The present
study focuses on just such an area.

In northeastern Wisconsin, loess occurs as discontinuous deposits
across the landscape, often only on uplands and sideslopes; most
lowlands lack loess entirely, as do many upland areas that show
evidence of late glacial geomorphic instability, such as ice-contact
landforms including hummocky moraines. Although these loess
deposits have been previously documented on regional and state-wide
maps of surficial deposits, for example Hole (1950, reprinted 1968)
and Figure 1, as well as within Natural Resources Conservation Service
(NRCS) county soil surveys, our research focuses in detail on the distribu-
tion and origin(s) of this loess. This research contributes to the explana-
tion of the origins of thin, patchy and discontinuous loess deposits
that are especially common in the Midwest, north of the late Wisconsin
terminal moraine (Hole, 1950 (reprinted, 1968); Thorp and Smith,
1952; Scull and Schaetzl, 2011). The purpose of this study is to map,
characterize and interpret the loess deposits of northeastern Wisconsin,
the northern extent ofwhich continues into thewesternUpper Peninsula
of Michigan.

Study area

Quaternary history

Northeastern Wisconsin and Michigan's western Upper Peninsula
were glaciated several times during the Quaternary Period. Within
the study area (Fig. 2), the topography and near-surface sediments
are dominantly the result of the advance and subsequent retreat of
the southern margin of the Laurentide Ice Sheet (LIS) between
about 30,000 and 11,000 cal yr BP (Syverson and Colgan, 2004;
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Figure 2. Outline of the study area, overlain onto a map of surficial sediment distribution (including loess thicknesses), as indicated on NRCS county soil surveys. Topography is
illustrated by use of a hillshade DEM. Prominent cultural features (e.g., county and city names) also appear.
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Attig et al., 2011a). Areas of bedrock-controlled topography do occur,
however, in the eastern part of the study area, particularly in Iron
County, Michigan.

By about 30,000 cal yr BP, the Green Bay, Langlade, andWisconsin
Valley lobes of the LIS had advanced into Wisconsin, reaching their
maximum extent several thousand years later at the Hancock–
Almond, Parrish, and Harrison moraines, respectively (Fig. 3; Clayton
and Moran, 1982; Attig et al., 1985; Mickelson, 1986; Attig et al.,
1998; Syverson and Colgan, 2004; Attig et al., 2011a). Ice recession
was interrupted by several significant stillstands and readvances.
Because of the configuration of the ice lobes in the study area, during
ice retreat the high drumlin crests in the central part of the area
(which also is higher than areas to its east and west) probably became
ice-free early (Simpkins et al., 1987). These areas remained ice-free
during subsequent readvances. Although ice margin recession in the
north occurred mainly by downwasting and widespread stagnation,
retreat in the eastern parts of the study area was associated with a
muchmorewell-defined icemargin (Thwaites, 1943;Mickelson, 1986).

In the north, the east–west trending ice margin receded far
enough north of the drainage divide for lakes to form between it
and the bedrock highlands along the Wisconsin–Michigan border.
Ice then readvanced into northernWisconsin, depositing theWinegar
moraine (Fig. 3). The sediment in theWinegar moraine contains more
silt than that of earlier advances, as a result of the glacier overriding
and incorporating silt-rich lake sediment (Attig, 1985). The Winegar
readvance, ca. 14,000 cal yr BP (Attig et al., 2011a), resulted in the
formation of extensive outwash plains in the northwestern part of
the study area. These sandur surfaces are referred to here as the
Vilas outwash plains, named for Vilas County which contains the
majority of this landscape (Fig. 2). In many areas, this outwash was
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Figure 3. Ice-marginal positions (modified from Clayton et al., 2006) and sample locations used in this study. Ice retreat in this area proceeded from southwest to northeast; hence,
the youngest moraines are in the northeastern part of the map.
Color legend as in Figure 2.
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deposited over remnant ice and outwash from earlier advances (Attig,
1985; Attig and Clayton, 1993; Attig et al., 1998). After recession
from the Winegar moraine, the ice readvanced and deposited the
Marenisco moraine about 13,000 cal yr BP (Attig, 1985; Peterson,
1986; Fig. 3). Taken together, the distribution of the many lakes and
wetlands in the extensive pitted and collapsed outwash plains,
coupled with the hummocky morphology of the moraines, indicate
that buried ice persisted throughout the period of deglacation until
about the time of the Winegar and Marenisco readvances. This persis-
tence of buried ice resulted in extensive landscape instability, due to
melting of shallowly buried ice. Permafrost is thought to have existed
in northern Wisconsin and adjacent Michigan until about this time
(Clayton et al., 2001).

In northeastern Wisconsin, the pattern of deglaciation associated
with the Green Bay Lobe was very different. Rather than widespread
stagnation, ice receded downslope, into the Green Bay lowland, as a
continuous ice margin. As a result, ice-margin positions are marked
by narrow, well-defined moraines and heads-of-outwash (Thwaites,
1943; Clayton, 1986; Attig and Ham, 1999). The timing of the Green
Bay Lobe retreat remains uncertain; retreat may have started as
early as between 19,000 and 17,000 cal yr BP, or perhaps as much
as 2000–3000 years later (Syverson and Colgan, 2004; Attig et al.,
2011b). After the ice receded eastward from the Hancock–Almond
moraine, it readvanced to the Elderon, Mountain, and Athelstane
moraine systems (Fig. 3). Between these moraine systems and higher
topography to the west, several north–south trending outwash plains
formed, which we refer to as the Mountain/Athelstane outwash plains.
Because of the high and continuous character of these linear moraines,
localized and perhaps ephemeral, proglacial ponding was common in
areas currently mapped as outwash plains. Here, as in the north, ice
buried by outwash or glacial sediment likely persisted until about the
time of the Athelstane readvances.

Landscapes and geomorphology of the study area

Most of the study area consists of drumlins and other low hills,
broad belts of hummocky moraines that locally contain remnants
of many ice-walled lake plains, and nearly flat, locally pitted to exten-
sively pitted and collapsed outwash plains (Fig. 2).The majority of the
glacial sediment is sandy; sandy loam tills are common, and outwash
is predominantly sand textured. Bedrock is near to the surface in Iron
County, Michigan, and as a result, much of the sediment here is very
gravelly. Elsewhere, the cover of glacial sediments is thicker, less
gravelly, and bedrock outcrops are uncommon. The loess cover in
the study area is often restricted to uplands, and is especially thick
on high drumlins near the center of the study area (Fig. 2).

Because loess deposits occur at various locations across Wisconsin
and have gradual and overlapping boundaries (Hole, 1950 (reprinted,
1968); Scull and Schaetzl, 2011), we chose to precisely define our
study area, so as to focus on the loess deposits within. Our goal in
defining the study area was to incorporate not only the core, but
also the margins, of the northeast Wisconsin loess sheet, even as it
extends into Michigan where Scull and Schaetzl (2011) named it
the Iron County loess sheet. We included the surrounding glacial
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landscapes if we believed that they were associated with the genesis
of the loess. Thus, the study area includes neighboring outwash plains
and often terminates at distal moraines (Fig. 2).

In northern Wisconsin, the study area includes areas south of the
Winegar–Watersmeet moraine, particularly the Vilas outwash
plains (Figs. 2, 3). At its southern margin, we delimited the study
area at the Oneida–Lincoln County line, approximating the southern
limit of the outwash surfaces. In Michigan, the study area border
roughly coincides with the distal margins of the Watersmeet, St.
Johns, and Sagola moraines, as defined by Peterson (1985, 1986)
and modified by Schaetzl et al. (2013). These moraines form a prom-
inent glacial re-entrant in Iron County, MI (Figs. 2, 3), within which
the loess cover is particularly thick (Fig. 2; Luehmann et al., 2013).
In northeastern Wisconsin, the eastern margin of the study area fol-
lows the state border. Farther south, it follows the middle Athelstane
moraine (Figs. 2, 3). The southern border of the study area follows
the Menominee County line westward, to the late Wisconsin mo-
raine, named the Outer moraine by Thwaites (1943) (Figs. 2, 3). In
Langlade County, the border generally follows the proximal slope of
this moraine, through the interlobate with the Summit Lake moraine.

Methods

Preliminary data management and mapping

Hole's (1950, reprinted 1968) map of aeolian silt and sand
deposits (Fig. 1) identified a broad area of loess in northeastern
Wisconsin, which we used as a starting point for sampling. Additional
detail on loess thickness and distribution was provided from Natural
Resources Conservation Service county soil maps. Data from these
maps, for both Wisconsin and western Upper Michigan, were
downloaded from the NRCS's Soil Data Mart website (http://
soildatamart.nrcs.usda.gov/) and imported into a GIS. In the GIS we
rasterized the initial vector files and seamed the county-wide cover-
ages together into statewide (Michigan and Wisconsin) mosaics.

In order to make the NRCS soil data more useful for mapping and
sampling, we determined the parent material(s) for most of the soil
series from the official series description on the NRCS website
(http://soils.usda.gov/technical/classification/osd/index.html). When
the parent material description for a soil series was stated as loess,
usually over another sediment type, we also estimated its thickness
from the description, entered these data into the GIS attribute table,
and coded the map unit symbology in the GIS coverage accordingly
(Fig. 2). Although we did not focus on them, soils described in
the NRCS official series descriptions as having loamy loess or loamy eo-
lian deposits as parentmaterial, especially common on theWatersmeet/
Winegar moraine, were also singled out and uniquely coded (Fig. 2).
These GIS data were loaded onto a laptop computer, equipped with a
built-in GPS unit, facilitating field navigation to predetermined sites for
sampling loess soils.

Field methods and loess sampling

The field-sampling goal was to obtain a large number of represen-
tative loess samples from broad upland sites of low-slope gradient,
using a repeatable and consistent methodology. Upland sites were
deemed the most geomorphically stable areas in the landscape, and
thus would have been most likely to have retained loess by limiting
its potential erosion, redistribution, and/or burial. A digital elevation
model (DEM) with 10-m resolution (USGS, 2009), used in conjunc-
tion with the loess map data, helped optimize the sample site targets.
Forested areas were preferred for sampling, as many have never been
plowed; agricultural fields were lower priority but were, necessarily,
sampled in some areas.

Geographically, we sought to sample uniformly across the uplands
of the study area. We aimed for a final sample density of at least one
sample every 20–30 km2, with slightly higher densities in areas
where the loess deposits are more prevalent or where they exhibit
rapidly changing textural properties across the landscape. We were
particularly interested in sampling upland sites near and within the
outwash plains that border the main loess deposit, as these areas
contained sediment that appeared to be eolian but with textures
that were coarser than expected.

At each of 419 sample sites, a few of which lie just outside the
study area boundary but are geomorphically related, loess thickness
was determined, and a 500–600 g loess sample was taken using a
hand auger (Fig. 3). For this reason, all loess thicknesses discussed
in this document should be viewed as maximum thicknesses, because
we sampled sites where loess should have been optimally preserved.
Samples were taken within or below the soil profile but at least
≈30 cm from any underlying lithologic discontinuity (Schaetzl,
1998). Our goal was to obtain an amalgamated sample of loess that
was representative of the entire loess column at the site, while avoiding
the areas immediately above the underlying lithologic discontinuity,
and the upper profile (A horizon) (Schaetzl and Luehmann, 2013).
Areas of obvious disturbance, such as by tree uprooting (Schaetzl
et al., 1990; Kabrick et al., 1997a, 1997b; Phillips and Marion, 2006),
were avoided. Loess thickness and textural properties were noted at
each site.

Lab analyses

The samples were air dried, lightly ground to pass a 2-mm sieve,
and passed through a sample splitter and recombined (four passes
total), in order to achieve the high level of homogeneity necessary
for analysis on a Malvern Mastersizer 2000E laser particle-size
analyzer. We did not remove carbonates or organic matter from the
samples prior to further analysis, because the loess was not originally
calcareous, and because these lower-profile samples contained
almost no organic matter. From each homogenized sample, 2-g
subsamples were removed and dispersed in a water-based solution
of (NaPO3)13⋅Na2O, after shaking for 2 h. As discussed in Miller and
Schaetzl (2012), subsamples of soil run in most laser particle-size
analyzers are so small that they may not be representative of the
larger sample. Thus, in order to optimize the quality of our particle-size
data,we analyzed two subsamples fromeach loess sample and compared
the data statistically. When the suite of particle-size data—of which the
Mastersizer produces 105 discrete “slices” or bins—were sufficiently
“similar,”weused themean values for all subsequent analyses. However,
in cases where the data from the two runs were sufficiently dissimilar
(see Miller and Schaetzl, 2012 for details), a third, or sometimes even a
fourth subsample was run. In these situations, the two most comparable
samples were used to generate the mean particle-size values used in
subsequent analyses.

Data analyses

Because these loess deposits are thin (≈10–125 cm) and under-
lain by sandy glacial sediment, the textural characteristics (i.e., the
particle-size distributions) of most samples have been compromised
by sand that has been mixed upward by pedogenic processes into
the otherwise silty loess (Schaetzl and Luehmann, 2013). Evidence
of sand intermixing is clearly illustrated in most of the particle-size
distribution curves from loess samples taken within the study
area (Fig. 4). The distinct bimodality of the curves shows a silt or
very fine sand peak, which we attribute to eolian transport, and a
second peak (or mode)—usually in the medium sand fraction—which
we attribute to the underlying glacial sediment. Schaetzl and Luehmann
(2013) demonstrated that the sand mode in loess samples from
this area is often similar to the underlying, sandy glacial sediments,
confirming its origin. Note also that the sample directly overlying hard

http://soildatamart.nrcs.usda.gov/
http://soildatamart.nrcs.usda.gov/
http://soils.usda.gov/technical/classification/osd/index.html
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bedrock lacks a secondary sandmode because there was no sand here to
mix into the overlying loess (Fig. 4A).

This type of secondary sand “contamination” occurs in almost
every sample recovered from the study area (Fig. 4), and as a result
it dramatically skews particle-size distribution data. Therefore, as a
necessary next step in the analysis, we followed the practice of
Luehmann et al. (2013) by “filtering” the particle-size data; that is, es-
sentially removing those particle sizes that compose the second (or,
rightmost) “peak” on the particle-size curves (Fig. 4). Schaetzl and
Luehmann (2013) confirmed that the vast majority of the underly-
ing sediment in this area is very sandy, and thus the mixed-in sedi-
ment is almost all sand; little or no silt has been mixed upward into
the loess. The goal of the filtering process is to restore the
particle-size data as close as possible to its presumed original
Figure 4. Original particle-size curves (thin gray lines) for various loess samples from the stu
loess is mixed into the initially silty sediment. Also shown (dotted black lines) are the parti
most of the sand data and recalculates the remaining particle-size fractions. See Luehmann
Wisconsin. B. Moderately thick, silty loess in Iron County, Michigan. C. Moderately thi
west-central edge of the loess sheet, Forest County, Wisconsin. E. Thin, coarse-textured loes
thick and poorly sorted, coarse-textured loess near the Marenisco moraine, Gogebic County
composition. The filtering procedure runs as a macro in MS-Excel.
Details of the procedure are provided elsewhere (Luehmann et al.,
2013) and the Excel code is available at http://www.geo.msu.edu/
schaetzl/Links.html. Examples of pre- and post-filtered data curves
are presented in Figure 4.

GIS analyses

We kriged the “filtered” loess particle-size data, as well as thick-
ness and sorting data. Although kriging may be a less-than-optimal
interpolation routine in situations where soil properties exhibit
spatial dependencies at scales smaller than the scale at which sampling
was performed (Pongpattananurak et al., 2012), our dense sampling
network, when applied to sediment like loess that has low amounts of
dy area, illustrating the bimodality that commonly occurs when sand that underlies the
cle-size curves for the same samples after applying a “filtering” operation that removes
et al. (2013) for details. A. Thick loess on a bedrock knob, northern Florence County,

ck loess in western Florence County, Wisconsin. D. Moderately thick loess on the
s on the far eastern edge of the loess sheet, Marinette County, Wisconsin. F. Moderately
, Michigan.

http://www.geo.msu.edu/schaetzl/Links.html
http://www.geo.msu.edu/schaetzl/Links.html


Table 1
The major upland1 soil series in the study area2 that have some type of eolian mantle.

Soil series NRCS parent material description
(upper parent material–lower parent material)

Range of eolian mantle
thickness
(NRCS OSD) (cm)

Texture class of loess or
eolian mantle (NRCS)

Extent within study area
(%)

Silty loess
Wabeno Loess–loamy and sandy till or glacial mud-flow sediment 30–91 Silt loam 6.34
Stambaugh Modified silty eolian sediments–gravelly sandy deposits 61–102 Silt loam 2.56
Goodman Loess–till 30–102 Silt loam 1.58
Goodwit Loess–till 30–102 Silt loam 0.20

Silty–sandy loess
Champion Modified loamy eolian material–gravelly sandy or loamy glacial till 41–61 Silt loam/fine sandy loam 2.52
Sundog Modified loamy reworked eolian deposits–sandy and gravelly glaciofluvial

deposits
Not reported Very fine sandy loam 1.07

Petticoat Modified silty eolian material–sandy glacial till Not reported Silt loam 0.84
Peavy Modified loamy eolian material–loamy, dense glacial till Not reported Silt loam/very fine sandy

loam
0.25

Wakefield Modified loamy eolian deposits–loamy glacial till 30–46 Silt loam 0.11
Keewaydin Loamy and silty eolian deposits–till 38–76 Fine sandy loam 0.07

Sandy loess
Padus Loamy alluvium–stratified sandy outwash 61–102 Sandy loam 14.15
Pence Loamy alluvium or eolian deposits–stratified sand or stratified

sandy outwash
25–51 Sandy loam 5.93

Keweenaw Sandy deposits Not reported Loamy sand 3.87
Karlin Sandy deposits Not reported Loamy fine sand 1.59
Pemene Loamy sand glacial till Not reported Loamy fine sand 0.11
Lode Modified loamy eolian deposits–sand and gravel 41–91 Silt loam/loam 0.22

1. Most of the upland soils, formed in loess, also have down-catena associated soils in wetter drainage classes. For the sake of brevity, they are not listed here.
2. The study area spans 14,900 km2.
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short-term spatial variation, gave us confidence in this method for this
application (Matheron, 1963; Scull and Schaetzl, 2011). We used the
geostatistical wizard module of ArcGIS to create various kriged maps,
symbolizing the data in isoline format. Normally, we set the default pa-
rameters in the geostatistical wizard to 15 and 12 maximum and mini-
mum neighbors, respectively. The number of isolines, as well as their
spacing (equal interval vs. geometric interval), was adjusted in each
map to maximize interpretability. Lastly, we clipped the isolines to the
approximate spatial extent of the loess, which is a slightly smaller
area than that of the study area boundary.
Results and discussion

Loess distribution and thickness

Maps of parent material determinations, as indicated on each soil
series' official description (OSD) on the NRCS website (http://soils.
usda.gov/technical/classification/osd/index.html), were used as esti-
mates of loess distribution in the study area. We have found the NRCS
maps to be excellent predictors of loess presence/absence, as well as
thickness (e.g., Stanley and Schaetzl, 2011). That is, whenNRCS descrip-
tions indicate that a soil has formed in loess, we have been able to
confirm the observation in the field at nearly all sites.

In glaciated regions, however, parent material assessments by the
NRCS are usually done conservatively. That is, when NRCS personnel
are unsure of the parent material, or when a series can occur on a
number of similar materials, OSDs often use only generic descriptors.
For example, several soil series in this area are described with “loamy
sediment” or “loamy alluvium” parent materials. Many of these series
actually have a thin but recognizable eolian mantle, although some of
the underlying sediment has usually been mixed into it (Schaetzl and
Luehmann, 2013). For this reason, some soils in the study area that
have formed in an eolian mantle lack explicit “loess” parent material
descriptors in their OSDs. Nonetheless, the dominant upland soils in
the region that have formed in loess, are described as such by the
NRCS (Natzke and Hvizdak, 1988; Linsemier, 1997; Boelter and Elg,
2004; Boelter et al., 2005; Table 1) and are shown in Figure 2.
Loess occurs mainly on the uplands that lie between the Vilas
outwash plains to the west, generally associated with the Winegar
moraine, and the outwash plains to the east that are associated with
the Mountain and Athelstane moraines. This loess sheet continues
into Michigan's western Upper Peninsula, where it lies within the
box-shaped, glacial reentrant bordered by the Watersmeet, Ned Lake,
St. Johns and Sagola moraines (Fig. 3). Where present, the loess
is thickest on upland sites that presumably became geomorphically
stable shortly after deglaciation. It thins on side slopes and is often
undetectable in lowlands. Most lowlands in the study area carried
glacial meltwater and contained ice later than adjacent uplands; loess
deposited there may have been buried by, or mixed into, glaciofluvial
sediment, or even removed by meltwater, as buried ice melted. Many
thin loess deposits have been subsequently disturbed,mixed and buried
by tree uprooting, especially in areas of high water tables (Schaetzl et
al., 1990). In the few lowlands that have loess, it is often buried beneath
thick mats of decaying organic matter.

Across the study area, extensive areas of thick loess occur as a
nearly continuous mantle on the high drumlins of Iron County,
Michigan, and northern Florence County, Wisconsin (Habecker et
al., 1990; Kabrick et al., 1997a, 1997b; Fig. 5). The sediment on
these uplands is typically silty and well sorted, with particle-size
modal values of 31–38 μm and thicknesses between 50 and 75 cm.
In the NRCS soil survey (Linsemier, 1997) soils on these uplands are
mapped within the Wabeno soil series, described as having formed
in 30–90 cm of silty loess over gravelly sandy loam till (Table 1).
Thick, silty loess is especially noteworthy on hilltops north and east
of Sunset Lake, in Iron County. Other nodes of particularly thick
loess also occur in northwestern and extreme southern Florence
County, and in southeastern Forest County (Fig. 2). Within any partic-
ular area, loess is usually thickest on broad summits of high elevation.
Because all of these areas are high in elevation, it suggests that,
during deglaciation, they became ice-free and stable earlier than did
other, lower areas that contained native outwash rivers and abundant
buried ice. As a result, they would have been open for loess accumu-
lation longer than at other sites. Importantly, these sites may also
have become vegetated earlier, increasing surface roughness and
enhancing their ability to trap dust more efficiently than would

http://soils.usda.gov/technical/classification/osd/index.html
http://soils.usda.gov/technical/classification/osd/index.html
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have other, less vegetated sites (Trainer, 1961; Tsoar and Pye, 1987;
Pye, 1995; Lehmkuhl et al., 2000; Sweeney et al., 2007).

Loess is also noticeably absent in some upland areas within the
core of the study area, particularly those areas that may have been
geomorphically unstable for longer periods of time, due to abundant
buried ice and thawing permafrost; these areas are readily identified
because of high densities of kettles, hummocky topography, and the
widespread occurrence of coarse-textured, ice-contact stratified
drift (Clayton, 1986). Where loess is found in areas of collapse and
instability, it is patchy and highly spatially discontinuous. These
areas contrast with the high, stable drumlins of Iron County, which
do not show evidence of collapse and have thick loess mantles.
Many areas identified as collapse topography in Florence County were
mapped by NRCS personnel as within the Padus series, formed in 60–
100 cm of sandy loam sediment over stratified sandy and gravelly
sediment. We interpret much of the coarseness of the upper profile to
mixing of loess and the underlying, sandy sediment, or to erosion and
redeposition, rather than to the initial texture of the eolian material.

Simpkins et al. (1987, 18) described “wind-blown sediment
consisting of fine sand and silt” throughout the uplands of Forest
County, Wisconsin. Just as they stated that in this area it approaches a
meter in thickness, we found that loess thickness here typically is
between 70 and 90 cm (Fig. 2). Field observations indicated that this
loess cover varies in thickness, even on uplands, largely because of
disturbances by tree uprooting and burrowing mammals (Clayton,
1986; Kabrick et al., 1997b). On sideslopes, much of the loess cover
thatmay have existed has been transported downslope by colluvial pro-
cesses, leaving behind a thin, mixed layer of loess and the underlying
glacial sediment (Simpkins et al., 1987). Such non-summit areas were
not sampled as part of the present research.

In general, the loess cover across the region is thickest along a N–S
axis, running from south–central Iron County, MI, through west-
central Florence County, WI, and into southeastern Forest County, WI
(Fig. 6A). Here, the area of thickest loess is shifted east of center, toward
the Mountain/Athelstane outwash plains. A second node of thick loess
occurs in southeastern Vilas County, although this may be a statistical
artifact driven by thick loess at two points. The loess thickness gradient
is remarkably steep along the eastern edge of the loess sheet, in central
Florence County and in southeastern Forest County. And, notably, loess
thickness thins in parallel with the major ice margin locations in the
Upper Peninsula (Fig. 6A).

Loess is generally thin or undetectable on the flat and pitted
surfaces of the outwash plains of the study area. However, a loamy
mantle, which we interpret as eolian sediment, is commonly found
on many of the “flatter” uplands that rise above many of the broader
outwash surfaces (Natzke and Hvizdak, 1988). Many of these uplands
are outwash fans that became isolated and stable when the ice block
that supplied water and sediment to them melted, even as meltwater
continued to flow across broad, adjoining surfaces below. Loess is
present on these uplands because they provided stable sites for eolian

image of Figure�5


Figure 6. Kriged isoline maps of loess characteristics across the study area, set on a gray hillshade background. Yellow areas are outwash plains and meltwater sluiceways. Brown
areas are wide, hummocky moraine tracts. Isoline values do not occur at equal intervals, as per the default mapping routine in ArcGIS. A. Loess thickness (cm). B. Mean weighted
particle size (μm). C. Content of very fine, fine and medium sand (50–500 μm). D. Content of fine sand (125–250 μm). E. Content of very fine sand (50–125 μm). F. Content of coarse
silt and very fine sand (40–125 μm). G. Content of medium silt (20–35 μm). H. Content of fine and medium silt (12–35 μm). I. Content of fine silt (12–25 μm). J. Mode of the
0–1000 μm particle-size fraction (μm).
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deposition of sediment generated from the surrounding, active
outwash plains. Most of these uplands are mapped within the Padus
or Pence series (Natzke and Hvizdak, 1988); Padus soils are particular-
ly extensive across the study area (Table 1). Figure 7 shows the typical
topographic expression of these uplands, as well as the particle-size
curves for the coarse-textured eolian sediment found on them. This
sediment is typicallymoderately sorted,with particle-sizemodal values
of 33–38 μm. Considerable amounts of sand, and often a small amount
of gravel, have usually been mixed into this otherwise silty, eolian
material, making it appear abnormally sandy when field-textured.
Pedoturbation of underlying sediment into thin loess is a common
process (Rutledge et al., 1975; Schaetzl and Hook, 2008; Schaetzl and
Luehmann, 2013). It is likely that vegetation began to colonize these
uplands even while meltwater was flowing between them, further
facilitating loess deposition, and minimizing erosion of loess that had
accumulated there.

Source regions and paleoclimate implications for the loess in Wisconsin

Normally, loess thins and becomes finer-textured away from its
source region (Smith, 1942; Ruhe, 1969; Fehrenbacher et al., 1986;
Putman et al., 1989; Follmer, 1996; Mason et al., 1999; Bettis et al.,
2003). However, the NEWisconsin loess sheet is thickest in its central
or east-central region, and thins toward the edges (Fig. 6A). We
suggest that this thickness pattern exists because the loess—at least
in Wisconsin—had two distinct sources: outwash plains on its eastern
and western margins. As a result, overlapping distance decay trends
of loess thickness have combined to produce maximal thicknesses
in the center of the deposit. The area of maximum thickness is then
skewed toward (1) the source area that was contributing relatively
more sediment, and/or (2) the area from which the distance–decay
curve sloped most gradually (Fig. 6A).

Deflation of loess from active outwash plains is not a markedly
different scenario than is the longstanding assumption of meltwater
valley trains as loess sources. Indeed, Hobbs (1943) referred to the
area next to the ice front as a zone of eolian deflation. Outwash plains
offer broad, flat areas for winds to sweep across, and if active, provide
continued exposures of fresh sediment—diurnally and seasonally—
from which silts and fine sands can be entrained. Although quite
sandy, outwash in the study area also contains considerable amounts
of silts and fine sands (Fig. 7). Thus, our study suggests that the loess
in Wisconsin was sourced primarily from outwash plains, and that
the winds responsible for loess transport were dominantly off the
ice, not westerly (see below).

Textural data provide strong evidence that both the Vilas and
Mountain/Athelstane outwash plains were the sources of loess for
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this loess sheet (Figs. 6, 8). Within both outwash plains, flat, stable
uplands are capped with a mantle of coarse, sandy (but sorted)
sediment that we interpret as loess (Fig. 7). All of the mapped textural
parameters indicate that this loess sheet, unlike almost all others, is
finest in the center, and coarsens toward each edge, pointing toward
dual sources. Particle-size fractions coarser than 50 μm (i.e., all the
sands) show similar spatial trends—decreasing regularly and predict-
ably in abundance away from the outwash plains, with minimal values
in the center of the loess sheet (Figs. 6C–F). All of the silt particle-size
fractions show the opposite trend: they increase regularly away
from the outwash plains, peaking within the center of the loess
sheet. Lastly, particle-size modes—the size fraction found most
commonly in the sample—are coarsest near and within the outwash
plains, with minimum values in central Forest County (Fig. 6J).

The outwash in this region contains enough fine sediment to have
been a significant loess source. Six outwash samples, taken within the
C horizon of soils at various locations on the late Mountain outwash
plain, contained an average of 9.5±3.7% silt and 5.8±5.0% very fine
sand. Similar data, from five samples on the Vilas outwash plains, are
as follows: 10.8±4.8% silt and 5.1±3.7% very fine sand. Meltwater
in northern and northeastern Wisconsin was silt-laden, and although
well-sorted, the outwash here retained some of that silt. Clayton
(1986) mapped several areas of late Mountain-aged till in eastern
FlorenceCounty,whichwe visited and sampled. Ourfield interpretation
of the sediment from these areas pointed to glaciolacustrine sediment
overlying silty tills. Glaciolacustrine sediment in this area formed as
meltwater became ponded distal to the Mountain moraines (Thwaites,
1943). Three samples of sediment from one of these lacustrine deposits
(initiallymapped as till, unit gf, on Clayton's (1986)map)were recovered
from below the soil profile; they had average values of 22.9±6.5% clay,
49.7±5.5% silt, and 10.9±6.3% very fine sand. Collectively, these data
confirm that the ice in this region carried considerable amounts of silt
and fine sediments, and that this sedimentwas transported into outwash
and proglacial lacustrine settings. These data help support our contention
that the loess here was sourced from the Vilas and Mountain/Athelstane
outwash plains and that loess from these two distinct sources overlaps
within the center of the sheet.

Details of loess textural trends can provide additional information
about the character of each of these two loess sources, as well as
paleoenvironmental conditions during loess deposition. For example,
loess on the easternmargins of the sheet is considerably coarser than is
loess in and near the Vilas outwash plains, typically containing 10–15%
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more very fine, fine and medium sand (Figs. 6C–J, 7). This textural-
coarsening pattern is also highly regular and predictable (Fig. 8).
These deposits are as coarse as many of the classic European
cover sands but are not stratified (Vanmaercke-Gottigny, 1981; Kasse,
2002; Haase et al., 2007; Semmel and Terhorst, 2010). Like the European
cover sands, these sandy eolian deposits transition downwind into clas-
sical, silty loess (Edelman and Maarleveld, 1958; Renssen et al., 2007).
Fine sand contents in theNEWisconsin loess sheet, likely to bemost con-
centrated near its source area, easily attain their highest values (9–12%)
at sites near the margin of the Mountain/Athelstane outwash plain
(Fig. 6D). These data indicate that eolian sediment was being deflated
from the Mountain/Athelstane outwash plains and transported to the
west, into the NE Wisconsin loess sheet. Additionally, based on the
loess textural data shown in Figure 6, we suggest that the Mountain/
Athelstane outwash plain appears to have supplied more (and coarser)
sediment to the eolian system than did the Vilas outwash plains. The
primary evidence for this assertion is, again, spatial; for most of the
coarser size fractions, the local minimum is skewed well to the eastern
side of the loess sheet (Figs. 6C–F). Much less of the fine and very fine
sand fractions in the loess appears to have been derived from the
Vilas County source area. Particularly notable in this regard is the map
of very fine sand content (Fig. 6E). Very fine sand contents in the loess
exceed 20% for 25–30 km west of the Mountain/Athelstane outwash
plain, which is texturally comparable to loess only 5–15 km east of the
Vilas outwash plain (Fig. 6E). The local minimum for fine sand is located
at the Forest-Iron County line, almost 50 km from the Mountain/
Athelstane source area, but less than 30 km from the Vilas outwash
plain.

These data suggest that, in this region, easterly winds were
prevalent and strong, probably coming off the Green Bay Lobe ice
and traversing the Mountain/Athelstane outwash plains, deflating
finer sands and silts from these active outwash surfaces. Conversely,
westerly winds from the Vilas outwash plains source area, appear
to have been comparatively weaker and did not transport coarser
sediment as far into the loess sheet (Figs. 6C–E). Also possible is the
scenario where winds traversing the Vilas outwash plains were not
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blowing dominantly to the east-southeast and onto the drumlins
there, but rather, were more dominantly southward-flowing, normal
to the ice front (as at the Athelstane moraine margin).

Data from the study area suggest that katabatic winds blowing
directly off the ice sheet, often easterly but sometimes northerly,
were an important mechanism of loess transport. This finding stands
apart from most previous studies that document loess transport in
the midcontinent region, at this time, driven mainly on westerly
winds (Smith, 1942; Fehrenbacher et al., 1965; Ruhe, 1969; Mason,
2001). For example, based on loess data, Muhs and Bettis (2000)
and Muhs et al. (2008) showed that late glacial paleowinds were
dominantly westerly in and around the latitude of Iowa–Nebraska.
In order to reconcile with these apparently conflicting data, we sug-
gest that loess transport on katabatic winds may have only been a fac-
tor for areas within a few tens of kms from the ice margin, and
particularly in areas where the ice margin formed a reentrant. In re-
gions farther south, regionally strong westerlies could easily have
dominated the transport of loess, as the influence of the ice margin
and its local katabatic winds waned.

Easterly winds have been modeled for many of the ice-marginal
areas in the upper Midwest (COHMAP members, 1988; Bartlein et al.,
1998; Kutzbach et al., 1998). Other evidence for easterly winds during
the late Pleistocene, presumably driven by a glacial anticyclone, also
exists for areas in the northern Great Lakes region. Admittedly, these
areas are farther north—and much closer to the ice margin—than are
many of the study areas that have found evidence for westerly
winds at this time. Geomorphic evidence from spits and a delta in
Glacial Lake Algonquin in northern Lower Michigan, ≈2000 years
later and only 300 km to the east, provide proxy supporting data for
easterly winds (Krist and Schaetzl, 2001; Vader et al., 2012). Evidence,
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particularly textural data, from the loess in NEWisconsin also points to
strong easterly winds along the margin of the Green Bay Lobe in this
area. Because the ice margin trends north–south in the study area,
strong winds here would have been primarily katabatic in nature, or
katabatically enhanced easterlies coming from a glacial anticyclone.

The notion of loess transport by katabatic winds is not new (Muhs
and Budahn, 2006). Almost 70 years ago, Hobbs (1943) suggested
that loess could be driven by katabatic winds blowing off the ice
sheet, across proglacial outwash surfaces (Fig. 9). Modern experimental
data confirm that katabatic winds can easily achieve speeds of 10–
30 m s−1 for sustained periods of time (Bromwich, 1989; Heinemann,
1999). Research has shown that, for most days, the maximum wind
speed occurs during the early morning hours (Heinemann, 1999),
when outwash surfaces would be the driest because of nighttime
cooling, and that these winds routinely flow for substantial distances
out, away from the ice margin, if the terrain is flat (Bromwich, 1989).

Except for situations in which they were composed of extremely
well-sorted sands (i.e., lacked any silt), outwash plains and surfaces
should, theoretically, have been prodigious loess sources for a variety
of reasons: (1) fresh sediment was continually added to these
surfaces via meltwater, (2) diurnal and seasonal fluctuations in
water table/wetness conditions repeatedly refreshed and exposed
outwash sediments to deflation, and kept these areas free of vegeta-
tion, (3) wind speeds could have achieved high levels due to the lack
of vegetation and large expanses of flat terrain, and (4) saltation
could have initiated deflation and re-suspension of any silty sediment
in the depositional package (Mason et al., 1999).

In sum, our data support Hobbs' (1943) model of loess deflation
and transport via katabatic winds for our study area. Hobbs' model
does not appear to explain the distribution of loess along the west
side of the Des Moines lobe in Iowa (cf. Ruhe, 1969), or for some of
the other areas that he discusses, perhaps because these areas have
different ice margin geometries or lack an area of ice-marginal
outwash. However, in a glacial re-entrant area, such as NE Wisconsin,
katabatic winds may have been stronger and more persistent (Millar
and Nelson, 2001), facilitating deflation from the proglacial outwash
plains that existed there.

Source regions and paleoclimate implications for the loess in Michigan

Although the loess in NE Wisconsin continues into Iron County,
Michigan, and many of the textural trends observed on theWisconsin
side cross the border seamlessly, important differences do exist
between the regions. Loess in the Michigan part of our study area is
primarily located in the reentrant bordered by the Watersmeet,
St. Johns and Sagola moraines (Fig. 3). The loess thins predictably
and regularly toward each of the moraines, with thickness and
mode isolines often paralleling the moraine fronts (Figs. 6A, J).
Although thick, silty loess does occur in southern Iron County,
Michigan, most of the loess here is coarser textured than the loess
farther south, in Wisconsin (Fig. 6B). Contents of the various sand
fractions in the loess in Michigan are high, and as with thickness,
isolines of sand contents show predictable trends that parallel the
moraines. Very fine to medium sand contents are highest near the
moraines, and decrease away from them, toward the middle of the
reentrant area (Fig. 6C). Fine sand contents show generally similar
patterns (Fig. 6D). In the finer sand fractions, i.e., very fine sand, this
pattern gets more complex, displaying a local maximum in the far
eastern corner of the reentrant, near the Republic outwash plain
(Fig. 2), and near the broad outwash channels between Iron River and
the Watersmeet moraine (Fig. 6E). These data suggest that, in Iron
County, loess may have been sourced from end moraines, outwash
plains, and smaller, through-flowing meltwater channels (Fig. 9C).

Although spatial patterns for medium silt contents in the loess in
Michigan are more complex, when fine plus medium silt contents
are mapped, clear trends emerge. Again, contents of fine and medium
silt increase predictably, away from themoraines. Fine silt, particularly,
shows a local minimum in the eastern corner of the Iron County loess
sheet, immediately west of the Republic outwash plain (Figs. 2, 6I).
Clearly, the Republic outwash was rich in sands (Figs. 6C–F) but low
in silts; similarly, the morainic deposits in this area are very sandy.

Similar to the loess textural data in Wisconsin, where outwash
plains functioned as loess source regions, spatial data for the loess
suggest that the end moraines were source areas for the majority of
the loess in Iron County, Michigan. Unlike in NE Wisconsin, where
the end moraines are narrow ridges and the majority of the landscape
consists of outwash surfaces, the gravel-rich moraines here are broad,
generally loamy/sandy in texture, and with widespread collapse to-
pography due to readvances over ice-rich terrain (Peterson, 1986).
Subsequent meltout and slump processes would have led to continu-
ing exposure of tills and ice-contact sediment, making them available
for deflation. Small valley trains of through-flowing, proglacial
outwash could also have contributed to the generally coarse-textured,
near-source loess in this reentrant region (Fig. 6D). Areas in southern
Iron County and eastern Vilas County may have also been receiving ad-
ditions of loess from the Vilas outwash plains, from the small outwash
surfaces in SE Iron County, and even from the more-distant Mountain/
Athelstane outwash plains (e.g., Figs. 6H and I). Nonetheless, the coarse
textures of the loess in Iron County point to the end moraines and their
small outwash sluiceways as the main loess sources, similar to loess
in central Wisconsin, which was partially sourced from the wide,
hummocky, late Wisconsin end moraine (Stanley and Schaetzl, 2011).

As discussed above, katabatic winds in northeasternWisconsin may
have formed in association with the generally linear margin of the
Green Bay Lobe. Within the reentrant area in Iron County, however,
katabatic winds may have been particularly strong, because they
would have converged into this relatively small geographic area from
three sides. The Quaternary geology sets the area up for effective eolian
transport of heavier fractions such as fine sand, despite the high-relief
topography of the area. Note, for example, that fine sand contents of
the loess in Iron County remain high, even 10–15 km from the ice
margin, even though this sand would have to have been transported
upslope and normal to the long-axis trends of the Iron County drumlins.
Note that the regional low in the various sand contents (Figs. 6C–E) oc-
curs in southwestern Iron County, at a regional topographic high. Here,
topography overcame the effects of strongwinds andwas able to inhibit
sand transport, resulting in a steep gradient in sand content away from
the Watersmeet moraine.
Conclusions

This study is the first to examine a loess sheet of this extent, with a
sample size this large, using textural data that have been filtered to
remove particle-size data from coarse textured materials that had
been mixed in to the loess from below. This type of “filtered” data
better reflect the original loess particle-size distributions, and thus,
can be used to more accurately identify source areas and interpret
wind directions at the time of loess deposition (Luehmann et al.,
2013).

The loess in NEWisconsin and Iron County Michigan gets progres-
sively finer along trendlines that are generally normal to the major
ice margins. These patterns suggest that the loess was mainly
transported via strong katabatic winds, possibly associated with, or
strengthened by, a glacial anticyclone. These winds deflated sediment
from hummocky end moraines and proglacial outwash plains, depos-
iting loess on stable uplands, particularly on topographically high
drumlins. Loess derived from large meltwater valleys far to the west
was not a factor here. Many of the drumlinized uplands, which
today are covered with up to a meter of loess, may have been
deglaciated for some time and vegetated, increasing their surface
roughness and facilitating loess deposition.
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